x^2+7^2=24^2

Simple and best practice solution for x^2+7^2=24^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+7^2=24^2 equation:



x^2+7^2=24^2
We move all terms to the left:
x^2+7^2-(24^2)=0
We add all the numbers together, and all the variables
x^2-527=0
a = 1; b = 0; c = -527;
Δ = b2-4ac
Δ = 02-4·1·(-527)
Δ = 2108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2108}=\sqrt{4*527}=\sqrt{4}*\sqrt{527}=2\sqrt{527}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{527}}{2*1}=\frac{0-2\sqrt{527}}{2} =-\frac{2\sqrt{527}}{2} =-\sqrt{527} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{527}}{2*1}=\frac{0+2\sqrt{527}}{2} =\frac{2\sqrt{527}}{2} =\sqrt{527} $

See similar equations:

| 5x-3x-5+1=10 | | w–7=2 | | 28(y)=21(20) | | -3(1/9x)-4=3x-5 | | 5z-9=6 | | u+67=18 | | x+2x+(x+2)=26 | | 8=k-17 | | 3√2x^2–13x+5√2=0 | | 3a^2+8a=4 | | 3t+3t+9t=180 | | 4+3/x=6 | | 14y+53+71=180 | | 2x4*3x-6-8=120 | | 2x+14=−4 | | (11x-2)=(6x+7)= | | x-132=150 | | 36÷n=4*3 | | 8n+6=20(n=2) | | 3/8x+11=54 | | 9c-7=-16 | | 11/3+x=3/2/3 | | X-8=1-12(x+6) | | 6x=22x-14 | | –10h+10=–5h | | F(x)=3(x+10) | | -24=-0.4y | | 12p=28 | | 5x+42=8x | | x3−9=55 | | 1.6=1.03^n | | 16=4(u-5) |

Equations solver categories